Documentation
Overview
Glaium SDK enables businesses to implement global optimization for complex systems that can be individually controlled by humans, automatic devices or autonomous AI agents. It replaces traditional BI tools by offering structured data storage, retrieval, and analysis while dynamically optimizing resources across multiple systems.
Key Features
- Global Optimization: Deep analysis of effectiveness and efficiency of each system, identify bottlenecks and estimate optimal adjusts for each system in order to reach company’s goal.
- Autonomous System Management: Enable decentralized optimization.
- ETL Integration: Seamlessly pull and push data from/to external platforms.
- Dynamic Primitives: Automatically identify relevant metrics and dimensions for the business model.
- Insights and Recommendations: Generate optimization recommendations dynamically to each system.
Supported Languages
Currently, Glaium SDK is implemented in Python. Future versions will include support for additional programming languages, which will be specified in this documentation.
Programming Languages
Install
Install from PyPI
or
pip install glaium-sdk
Classes & Methods
Optimizer
Handles the connection to the Global Optimizer.
Methods:
optimizer(api_token,user,pw)
Parameters:
- api_token – Glaium API token for the organization
- user – Username (manager or owner) for the organization
- pw – Password for user login
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response: {}
optimizer.model(oper, name)
Parameters:
- oper – Operation type:
- get – Load a specific Model. Current available models:
- Mobile Gaming
- AdTech
- SaaS (coming soon)
- eCommerce (coming soon)
- set – Update or save the current systems set in a new or existent Model.
- del – Delete a specific Model.
- get – Load a specific Model. Current available models:
- name – Name for the model
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response – json containing all systems (agents) from the model: {agent_name_1:agent_id_1,…agent_name_N:agent_id_N}
optimizer.goal(name, description, objective, constraints, resources)
Parameters:
- name – Goal name
- description – Goal description
- objective – json containing {’system’:system_id, ’target’:’metric_name’, ’comparison’: comparison operator (>, ≥, =, ≤, <) , ’outcome’: value expected, ’by’:date}
- constraints – json containing {system_id_1:conditionals,…,system_id_N:conditionals}
- resources – json containing {system_id_1:{resource_1:availability, … resource_N:availability}, … system_id_N:{resource_1:availability, … resource_N:availability}}
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response – goal_id
System (Agent)
Defines, orchestrate and optimize systems (autonomous agents).
Methods:
system(oper,name)
Parameters:
- oper – Operation type: add or del
- name – Name for the system (agent)
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response – system_id (ok) or error message
system.config(system_id, inputs, output, frequency, duration, constraints, resources)
Parameters:
- inputs – json containing {system_id_1:units needed,…,system_id_N:units needed}
- units needed – An specific amount (float) or np.inf for all that is available
- output – json containing {’name’: output_name, ‘unity’: type of unity, ’cumulative’:yes/no for accumulation between cycles, ‘returns’; yes/no for returning units from other systems}
- frequency – when to start each cycle: ‘every hour’, ‘daily’, ‘every other day’, ‘every 1st day of month’…
- duration – max duration to use as watchdog timer.
- constraints – conditionals formula
- resources – json containing {system_id_1:{resource_1:usage, … resource_N:usage}, … system_id_N:{resource_1:usage, … resource_N:usage}}
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response – None (ok) or error message
system.optimization(system_id)
Parameters:
- system_id – system_id
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response – json containing {
- ’next_cycle’ : cycle number,
- ‘next_when’: datetime to start next cycle,
- ‘output’ : units expected for output,
- ‘inputs’: {‘input_1_name’ : units suggested for input 1, … ’input_N_name’ : units suggested for input N}}
system.start(system_id,cycle)
Parameters:
- system_id – Id of the system (agent) starting its process
- cycle (optional) – number of cycle starting
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response – None (ok) or error message
system.stop(system_id, status, stock, cycle)
Parameters:
- system_id – Id of the system (agent) starting its process
- status – json containing {status_type:status_msg}
- status_type: ok, halt (motive of halting process), hands-up (requires human intervention for <status_msg>) and error (type of error)
- stock – current volume of units available in the output
- cycle (optional) – number of cycle starting
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response – None (ok) or error message
system.performance(system_id)
Parameters:
- system_id – Id of the system (agent) starting its process
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response – json containing {
- ’effectiveness’:%,
- ‘efficiency’:%,
- ‘average_duration’: number of seconds}
Data
Manages data extraction, transformation, and loading (ETL) via Glaium Cube process.
Methods:
data.integration(oper, integration)
Parameters:
- oper – Operation type
- add – Add one or more new Integration(s)
- del – Delete one or more existent Integration(s)
- integration – json containing {name:integrator,… name_N:integrator}
- name – Name of the Integration
- integrator – Type of the Integration. See https://glaium.io/integrators/ for list available. Optional for del operation.
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response – None (ok) or error message
data.pull(metrics,dimensions,conditional,period)
Parameters:
- metrics – Numeric primitives (float)
- dimensions – Categorical primitives (string)
- conditional – formula
- period – initial and end datetimes or temporal expressions (Ex: “last 10 days”, “end of year”, “next 2 months”, “yesterday”, …)
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response – pd.DataFrame (ok) or error message
data.normalize(data,primitive,how)
Parameters:
- data – pd.DataFrame
- primitive – Primitive to normalize
- how – json containing {’normalization_function’:’params’,…} with the following available functions:
- automatic: list of terms to detect
- custom: json containing {search_value:replace_value,…}
- conditional: json containing {’if_condition’:value,…’else’:default_value}
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response – pd.DataFrame (ok) or error message
data.push(data, integrations, when, frequency)
Parameters:
- data – pd.DataFrame
- integrations – list of Integrations to push data to
- when – datetime to push data to the list of integrations.
- frequency – temporal expression. Ex: ‘every hour’, ‘daily’, ‘every other day’, ‘every 1st day of month’…
Returns:
- json {error_code:response}
- error code: 0 (ok) or not 0 (error)
- response – None (ok) or error message
Architectural Principles
- Systems Thinking & Distributed Control Systems: Each system operates independently while communicating with the Global Optimizer.
- Event-Driven Data Processing: Data is processed based on event occurrences rather than static snapshots.
- Theory of Constraints (ToC): Optimization follows ToC principles.
- Agent-Based Decision Making: Agents continuously adapt to changing conditions.
Conclusion
Glaium SDK offers a robust framework for intelligent global optimization, moving beyond dashboards to autonomous, goal-driven agent interactions.